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We develop a simple model in which longitudinal, compressible, unsteady heat 
transfer between heater and gas is computed in the small-Mach-number limit. This 
calculation is used to determine the transfer function of the heater, which plays an 
important role in the stability limits of the thermoacoustic instability of the Rijke 
tube. The transfer function is determined analytically in the limit of small expansion 
parameter y ,  and numerically for y of order unity. In the case p,u/cp = constant, an 
analytical solution can be found. 

1. Introduction 
We consider the Rijke phenomenon, i.e. the spontaneous thermal-acoustic 

oscillation that can appear when a heated gauze is placed in a tube in which a gas 
flows. A similar phenomenon occurs when a flame is anchored on a grid in the tube. 
All these phenomena are grouped together under the name ‘gauze tones’ (for a 
review, see for instance Strehlow 1979, Merk 1956 and Putman 1964). A general 
criterion for the acoustic instability was developed by Lord Rayleigh. When heat is 
released locally and periodically in a gaseous medium, an acoustic oscillation is 
amplified if the oscillating components of pressure and released heat flux are in 
phase. The problem remains to determine the relative phase between the pressure 
field and the released heat flux, which is in general a difficult problem of heat 
transfer. 

Since the heating process is localized, the heat transfer in the gas occurs in a small 
region around the heater. Outside this region, the temperature is uniform and flow 
disturbances are acoustic waves. When such a wave comes across the heater region, 
the fluctuating incoming flow causes a heat flux variation and, thus, a variation of 
gas density inside this region. As a result, because of mass conservation, a jump in 
the acoustic velocity field across this region occurs, which appears as a boundary 
condition for the acoustic field in the tube, applied a t  the heater position. The other 
boundary condition is that pressure disturbances are equal on both sides of the 
heater, since the flow is at small Mach number. Thus all the characteristics of the heat 
transfer between heater and gas are contained in the jump in the acoustic velocity 
field, whose relative value is called the transfer function. 

The calculation of the transfer functions is laborious since it involves the 
calculation of unsteady heat transfer in a compressible flow of gas. In  previous works, 
in order to make the problem tractable, many simplifying assumptions have been 
adopted, in particular that  the flow in the heater region is incompressible. Thus the 
feedback of the heat flux variation on the mass flow rate disturbance is neglected. 
Lighthill (1954) approximates the heater by a straight cylinder and performs a 
boundary-layer calculation. The transfer function is computed a t  low and high 
frequency. Cole & Roshko (1956), and more recently Bayly (1985), consider the same 
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configuration, but in the low-Reynolds-number limit, and use the Oseen approxi- 
mation to compute the transfer function. I n  this approximation, transport of 
heat by conduction is the dominant process near the body, and transport by heat 
convection only becomes important near infinity, where the fluctuating incoming 
flow is given. A similar calculation was done by Carrier (1955), in which the heater 
is a ribbon without thickness but with width d in the direction of the flow. 

Thus, it seems useful to develop a sufficiently simple model in which compressible 
effects are taken into account and in which the transfer function can be computed 
using controlled approximations. First, we present the model studied and describe 
the approximations that are made. Then, we determine the transfer function. It is 
computed analytically in the limit of small expansion parameter y 5 (T,  - T,)/T,, 
where and T,  are the temperatures of fresh and hot gases respectively, and 
numerically for values of y of order unity. In  the case pp/cp = constant, where p, p, 
c p  are the density of the gas, the heat conductivity and the specific heat per unit 
mass, respectively, an analytical solution can be found for any value of y .  

2. The model 
The simplest heating apparatus one can choose is a grid perpendicular to the tube 

axis, infinitely thin and conductive, heated at constant temperature T,. It is assumed 
to be of infinite dimension in the transverse direction, so that only longitudinal heat 
conduction need be considered. Thus, i t  appears as a discontinuity surface for the 
monodimensional fields of temperature, gas velocity and pressure, a t  which boundary 
conditions are applied. The equations of conservation .of mass, momentum and 
energy are simply 

-+-(pu) aP a = 0,  
at ax 

Here, u is the longitudinal gas velocity, p the pressure, T the temperature, and 7 and 
7' the first and second coefficients of dynamical viscosity. Furthermore p satisfies the 
ideal gas law, i.e. 

p = -  PRT 
M ,  ' (4) 

" 
where M,, is the molar mass. 

In  order to discuss the boundary conditions that one must apply at the heater 
location (x = 0 ) ,  assume that the grid is built with thin wires of diameter of order b,  
the mesh size being of the same order. The flow is perturbed around the grid on the 
same distance and, because of viscous friction, a pressure jump will appear across the 
grid, of order 

where ugrid is the mean flow velocity at x = 0. The subscripts - and + mean the 
pressure on the upstream and downstream sides of the heater, respectively. The grid 
can be considered as a discontinuity surface for the outer field if b is much smaller 
than the diffusive length I x p fpc,  U ,  where U is the velocity of the flow far upstream 
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from the grid. As a result, the diffusive time b2pc,lb on a distance of order b is small 
compared with the transit time across the grid, blU. Thus, the gas has time to reach 
the grid temperature, T,, so that, on the diffusive scale, temperatures on both sides 
of the grid can be considered as equal to T,, i.e. 

T- = T+ = T,. (6) 

p- u- = p+ wr+. (7) 
The configuration considered is that of the classical Rijke tube experiment : the gas, 

initially at temperature q (density pl) flows at constant rate m = p1 U across the 
grid. 

Furthermore, conservation of mass flux across the heater leads to 

3. The stationary solution 
As can be deduced from (1)-(4), the stationary profiles of T ,  p,  u and p satisfy 

m = p@, (8) 

d T  d (  -;g c“,: 
m - = -  v(T)- +--, 

dx dx 

d a  d p  d %  
m - = - - + ( q + q ’ ) T ,  

dx dx dx 

(9) 

where, for simplicity v 5 PICp.  For a perfect gas, v behaves like fi. 

steady solution as 
The flow is assumed to have small Mach number, so that one can expand the 

T 
- = 8,+M%,+ ... , 
q (12) 

(13) 
- 

- f~ =r0+M2r l+  ..., 
P1 

P Pl -==,+Wn,+..., 

a 
(15) U 

and 

where PI = p1 RTJM, is the pressure of the fresh gas. At zero order in the small-Mach- 
number limit, one obtains, using (8)-(ll),  the following equations : 

- = u0 +M2u1 + . . . , 

Tauo = 1,  (16) 
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roo,  = 1, 

where the new spatial coordinate 5 is defined by 

rn 
d t  = ~ 

v(Tl 0,) dx’ 
with [(O) = 0. 

leading order of the steady solution 
Equation (17) can be integrated by using boundary condition (6) to give the 

from which p and ti arc easily derived : 

(22) p = P1 T+o(M2), Tl 

m 

P 
u = :+O(M2). (23) 

In  particular, as can be deduced from (18), the pressure, in this approximation, is 
uniform on both sides of the grid. It follows that the jump of pressure between the 
fresh and hot regions is p, - p ,  = 6pgrid. It can be seen from ( 5 )  that the relative jump 
of pressure is small compared with 1, but large compared with M2 since b is small 
compared with the diffusive length. 

4. The transfer function 
4.1. Scalings and diflerent regions 

When a sound wave of frequency w and wavelength h encounters the grid, stationary 
profiles of the different physical quantities are perturbed. Velocity and pressure 
variations will vary on two different lengthscales in two different regions. The ratio 
l /h  can be written as l lh = MWT, were T = l /U  is the diffusive time. Thus, if UT is 
assumed of order unity, which is the case in experiments, 1 becomes very small 
compared with h when the Mach number is small. 

4.1.1. The acoustic region 
Far away from the grid, in both directions, the steady temperature is uniform and 

disturbances are regular acoustic waves, i.e. they vary on the acoustic wavelength 
h = c / w .  Such waves are characterized by a modulation of pressure p‘ and gas 
velocity u’, and the problem is to determine how such quantities are modified across 
the heater region. In (1)-(4), lengths are scaled by A. At zero order in the expansion 
at small Mach number, these equations reduce to the usual equations for acoustic 
disturbances propagating in a fluid at rest, i.e. 

apf a 
-+P-(u’) = 0, 
at ax 

- au’ ap/ 
at ax p - = - -  
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and 

From these relations follows the usual relation between pressure and velocity in a 
progressive acoustic wave, i.e. p’ = pcu’. 

4.1.2. The diffuusion region 
Inside the diffusion region, i.e. where the steady solution is not uniform, quantities 

vary on a scale 1, the diffusive length, which is much smaller than A. One begins to 
evaluate the jump of pressure disturbance across the diffusion region by integrating 
(2) over a distance of order 1. The contributions of the inertia terms p(au /a t )  and 
puau/arr: to  the jump of pressure are respectively 

and 

Thus, the corresponding relative jumps are 

p‘ A ’  

i.e. of order M ,  since the product WT was assumed of order unity, and 

The contribution of viscous stresses in the gas can be evaluated as 

and thus (33) 

since the Prandtl number is of order unity. 

through the mesh of the grid. From relation (5), one has simply 
An additional contribution from viscous stresses arises in the friction of the gas 

and thus (35)  

since b is assumed very.large compared with the mean free path of the molecules in 
the gas. Of all these contributions, the last one dominates, but is still negligible 
compared with 1. Thus, when the Mach number of the flow is small, the total relative 
jump of pressure disturbance across the diffusion region can be neglected. Thus, in 
a first approximation, a first boundary condition for the acoustic field that must be 
applied is 

p ;  = p ; + o ( M $ .  (36) 

As a result, the diffusion region can be considered as isobaric, i.e. the product pT is 
constant. Similarly, in (3), the contribution of the terms aplat and u a p l a x  are 
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respectively of order wp' x wpcu' and mUu'/l. The order of magnitude of the term 
puc,aT/ax is pu'yc2/1. Thus, the relative magnitudes of the pressure terms in (3) are 
respectively Mwr/y and W / y ,  and can be neglected if y 9 M ,  since UT was assumed 
of order unity. In these conditions the system of equations (1)-(4) simplifies to 

and PT = P I T , ,  (39) 
with the boundary conditions (6) and (7). 

Let 6pu(g) exp (iwt), 6p(fl) exp (iwt) and B(fl)  exp (iwt) be the disturbances of mass 
flow rate, density and temperature of the steady solutions given by (21)-(23). From 
(37)-(39) and (20), one deduces 

6pT+pe = 0. 

By using (41) and (42), one obtains 

1 T m  d 
iw p v(T)  dfl 

6 = -----(~PU), 

and from (41), 
(43) 

-_ d (1 -- dvi dT) - 1 dv l  ___ dTpv d f)) - - 1 0  . -- pv dT 6pu = 0. (44) 
d( vdT T - F  dfl vdT T-F dfl Tdfl  -V m2T d( 

Far from the heater in the fresh gases, 6pu = 6pu-,, the mass flow rate disturbance 
of the incoming sound wave. At 6 = 0, B = 0 since the grid is at constant temperature 
q, and thus, d(6pu)ldfl = 0 as can be deduced from (43). 

4.2. The transfer function 
Behind the grid, in the hot gases, disturbances are sound waves and 6pu(O) is the 
mass flow rate disturbance of the outgoing sound wave. The transfer function is 
defined as 

6U(O) - 6u-, 
6U-, 

Tr = (45) 

Since 6pu = p6u + 6pti,, and since for a sound wave, 6pu - cap, one can neglect 6pg 
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compared with 6pu a t  both 6 = - 03 and 5 = 0. Thus the transfer function can be 
rewritten as 

In  order to progress further, one takes u(T) - fi, as is the case for a perfect gas. 
Introducing the dimensionless variable $ = 6pu/6pu_, and the expansion parameter 
y = (G-Tl)/q, (44) becomes 

with boundary conditions 

$(-a) = 1, $’(O) = 0. (48) 
Here T = p1 ul/m2 is the diffusive time in the fresh gases. When a solution $([) of (47) 
satisfying the boundary conditions (48) is determined, the transfer function is 
computed by using (46), i.e. 

T r  = (i+y)$(O)-1. 

4.2.1. Asymptotic expansion for small values of the parameter y 

Equation (47) cannot be solved analytically for any value of y .  But an asymptotic 
expansion of the solution can be performed for small values of y ,  but much larger 
than M ,  and values of WT of order 1. 

(49) 

$(t) = $o(~)+r$1(E)+o(y) ,  (50) 
One expands $([) as 

and the transfer function T r  as 

Tr = Tr,+yTr,+o(y).  

At zero order in y ,  $,([) satisfies 

from which one deduces 

where 
1 (1 + 4i~7); 

2 x* = (54) 

Here, WT is real and only x+ has a positive real part. Thus, B, and A, are equal to zero 
since d$,(O)/dE = 0. Because $o( - 03) = 1 one can deduce 

$ 0 ( 8  = 1 (55) 

and thus, from relation (as), Tr, = 0. 
At first order in y ,  $l(E) satisfies 
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FIGURE 1. Real part of the transfer function for y = 0.1: curve 1 ,  asymptotic transfer function 
(60) ; curve 2, numerical result. 

and thus 

from which, one deduces, by using the boundary conditions, 

(57) 

The corresponding contribution to the transfer function is, by using (49), 

Tr, = xi'. (59) 

Thus, up to the first order in y ,  the transfer function is 

2Y Tr (07) = 
1 + (1 +4i07)$' 

whose real part and imaginary part are drawn on figures 1 and 2 (curves 1). 
The right-hand side of (56) comes from the last term of the left-hand side of (47). 

At first order in y ,  variations of heat conductivity appear unimportant since the 
dominant term comes from the expression for dT/dt. 

4.2.2. Thermoacoustic instability 
First, one recalls the equation for the acoustic eigenmodes of the tube. The tube 

is of length L,  with free extremities located a t  x = -rL and x = (1 - r )  L. The heater 
is a t  x = 0. One neglects all damping effects, i.e. losses by acoustic radiation a t  the 
free extremities and losses by transverse heat conduction and friction a t  the tube 
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FIGURE 2. Imaginary part of the transfer function for y = 0.1 : curve 1, asymptotic transfer 
function (60) ; curve 2, numerical result. 

walls. In these conditions, as can be deduced from (24)-(27), the acoustic field at the 
heater satisfies 

P ( 0 )  u,(O) = -cot(rX), u2(0) 
P1 c1 P2 c2 

where X = w L / c ,  is the dimensionless frequency of the acoustic wave. 

eigenmode equation as 
By using boundary conditions (36) and (45) at  the heater, one finally obtains the 

cos(rX) = 0. (62) 

When the transfer function Tr takes small values, as it is the case for instance when 
the expansion parameter y is small, one can expand the solutions of (62) around the 
free eigenmodes X,, solutions of 

(63) 

that are real numbers. Thus, one can write X = X0+6X, and obtain 

(64) 
Im (Tr) sin (rX,) cos (rX,) 

Im(6X) = 

( ;:::I P 1 4  
r +  2 (1 - r )  +a( 1 - r )  1 -2 cos2 (rX,) 

P2 c2 

Thus, instability occurs if Im ( TT) sin (rX,) cos (rX,) < 0, i.e. in the model considered 
sin (rX,) cos (rX,) > 0. For a given position of the heater in the tube, the growth rate 

4 Fl,M 202 
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is directly proportional to the imaginary part of the transfer function. This growth 
rate must be sufficiently large to  overcome damping effects, which are acoustic 
radiation losses a t  the free ends of the tube, transverse heat conduction and friction 
a t  the tube walls. Thus, as can be seen from (60), the instability of a given mode will 
be favoured if y is increased (increasing the heating power), or if the dimensionless 
velocity of the gas U(c/LD);  is neither too low nor too large. 

4.2.3. Transfer function for an  expansion parameter y of order unity 

using a shooting method (see for instance Press et al. 1986). 
Numerical treatment. We solve (47) with boundary conditions (48) numerically by 

Far away a t  infinity in the fresh gases, the solution of (47) can be expanded as 

M J  x 1 -yeS+BY exp i X + b  (65) 

and the complex number B is determined by the shooting method in order to satisfy 
the boundary condition $'(O) = 0. 

The shooting method implements a Newton-Raphson method. One starts 
intregration of (36) from the point 6 = -8  where the solution (65) is used, and 
computes #'(O) by using a fifth-order Runge-Kutta method with a constant step size 
(h  = 8/200)). Other choices of the starting point taken in the interval [-9, -41 do 
not change the result. The method is very efficient: only one or two shootings are 
required to adjust the complex number B and reach the condition $'(O) = 0 with an 
accuracy of 

Results. In  figures 1 and 2 the real and imaginary parts of the transfer functions 
are drawn for the small value of the expansion parameter y = 0.1. The asymptotic 
transfer function given by (60) (curves 1) is compared with the transfer function 
obtained numerically (curves 2). A very good agreement between the two solutions 
is obtained: the discrepancy between the curves 1 and 2 is of order y2, which is 
consistent with the degree of approximation of (60). 

In  figures 3 and 4, the real and imaginary parts of the transfer function are drawn 
for the three values of the parameter y 0.5,1 and 5 .  For any value of y, the transfer 
function takes the value y (i.e. Re ( T r )  = y and Im ( T r )  = 0) for the zero frequency. 
This is simply obtained by writing the mass conservation p l u l  = p 2 u z .  It is 
interesting to note that the extremum of the imaginary part of the transfer function 
is obtained for a value of wr x 1 ; the absolute value increases as y increases, and the 
range of dangerous frequencies becomes smaller. 

4.2.4. Analytical solution in the case pv constant 
A transfer function can be found exactly, when one assumes pv = constant. In this 

case, one can solve analytically the system of equations (37)-(39) with the boundary 
conditions (6) and (7)  by using the stream-function variable @ = Joxpdx  (see for 
instance (9)). Equations (37)-(39) become 

ap ap au 
at a@ a$ -+mo-+p2- = 0, 

ZIT aT a2T 
-+mo--pv-- = 0, 
at a$ a p  

and PT = PI Tl. 
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w7 

FIQURE 3. Real part of the transfer function - numerical result : 
curve 1 ,  y = 0.5; curve 2, y = 1;  curve 3, y = 5. 

Here c p  is assumed constant and mo = ( pu)z-o is the mass flux at the grid. The steady 
solution is the same as the one given by relations (21)-(23) where the variable 
defined in (20) is now (m/pv)$. 

Su($) exp (iwt) of the steady solution satisfy 
By using (66)-(68) the disturbances of temperature e($) exp (iwt), and velocity 

d6' d26' dT 
iwO+m--pv- = -6mo- 

d$ d$= d$ 

Here Sm, is the disturbance of the mass flux at the grid, and m = p1 U is the steady 
mass flow rate. By using the conditions @-a) = 0, O( + 00)  = 0 and the steady 
solution, the solution of (69) is simply found as 

where 
1 1 + ( 1 + 4 i w ) ~  

2 x+ = - 
P 1 4  

(73) 

4-2 
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FIGURE 4. Imaginary part of the transfer function - numerical result : curve 1 ,  y = 0.5; curve 2, 

y = 1 ; curve 3, y = 5 .  
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FIGURE 5. Real part of the analytical transfer function for y = 5. 
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FIGURE 6. Imaginary part of the analytical transfer function for y = 5. 

Here I ,  = p v / ( p i  U )  is the diffusive length and 7 = 1,/U is the associated diffusive 
time. By using the boundary condition (6), one deduces 8(0) = 0 and thus 

From (70) one obtains 

from which follows the transfer function 

(77) 
2Y 

(1 + y )  (1 + (1 + 4 i ~ 7 ) 9  -2y * 

Tr (u7) = 

I n  the limit of small values of the parameter y ,  the transfer function has the limiting 
expression given by (60), which confirms the fact that  at small values of y ,  the 
transfer function is independent of the function v ( T ) .  

I n  figures 5 and 6 the real and imaginary parts of the transfer function are drawn 
for y = 5 .  The comparison with the numerical integration allows us to note that the 
dependence of the function v (T)  on the temperature has little importance for the 
general form of the transfer function. 
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